Как называется данная система счисления. Перевод чисел из одной системы счисления в другую онлайн

1.3.1.ПОНЯТИЕ СИСТЕМЫ СЧИСЛЕНИЯ.

Все фантастические возможности вычислительной техники (ВТ) реализуются путем создания разнообразных комбинаций сигналов высокого и низкого уровней, которые условились называть «единицами» и «нулями».

Система счисления (СС) - это система записи чисел с помощью определенного набора цифр.CС называется позиционной , если одна и та же цифра имеет различное значение, которое определяется ее местом в числе. Десятичная СС является позиционной: 999.Римская СС является непозиционной . Значение цифры Х в числе ХХІ остается неизменным при вариации ее положения в числе.Количество различных цифр, употребляемых в позиционной СС, называется основанием СС.

Развернутая форма числа - это запись, которая представляют собой сумму произведений цифр числа на значение позиций.

Например : 8527=8*10 3 +5*10 2 +2*10 1 +7*10 0

Развернутая форма записи чисел произвольной системы счисления имеет вид

X - число;
a - основа системыисчисления;
i - индекс;
m - количество разрядов числа дробной части;
n - количество разрядов числа целой части.

Например : 327.46 n=3, m=2, q=10

Если основание используемой СС больше десяти, то для цифр вводят условное обозначение со скобкой вверху или буквенное обозначение.

Например : если 10=А, а 11=В, то число 7А.5В 12 можно расписать так:

7А.5В 12 = В·12 -2 + 5 ·2 -1 +А ·12 0 + 7 ·12 1 .

В шестнадцатеричной СС основа - это цифры 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 с соответствующими обозначениями 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F. Примеры чисел: 17D.ECH, F12AH.

ДвоичнаяСС - это система, в которой для записи чисел используются две цифры 0 и 1. Основанием двоичной системы счисления является число 2.

Двоичный код числа - запись этого числа в двоичной системе счисления. Например,

0=0 2
1=1 2
2=10 2
3=11 2 …
7=111 2
120=1111000 2 .

В ВТ применяют позиционные СС с недесятичным основанием: двоичную, восьмеричную, шестнадцатеричную. Для обозначения используемой СС число снабжают верхним или нижним индексом, в котором записывают основание СС. Другой способ – использование латинских букв после записи числа:

D – десятичная СС
В – двоичная СС
О – восьмеричная СС
Н – 16-ричная СС.

Несмотря на то, что 10-тичная СС имеет широкое распространение, цифровые ЭВМ строятся на двоичных элементах, т.к. реализовать элементы с 10 четко различимыми состояниями сложно. Историческое развитие ВТ сложилось таким образом, что ЭВМ строятся на базе двоичных цифровых устройств: триггеров, регистров, счетчиков, логических элементов и т.д.

16-ричная и 8-ричная СС используются при составлении программ на языке машинных кодов для более короткой и удобной записи двоичных кодов – команд, данных, адресов и операндов.

Задача перевода из одной СС в другую часто встречается при программировании, особенно, на языке Ассемблера. Например, при определении адреса ячейки памяти. Отдельные стандартные процедуры языков программирования Паскаль, Бейсик, Си, HTML требуют задания параметров в 16-ричной СС. Для непосредственного редактирования данных, записанных на жесткий диск, также необходимо умение работать с 16-ричными числами. Отыскать неисправность в ЭВМ невозможно без представлений о двоичной СС.

В таблице приведены некоторые числа, представленные в различных СС.

Двоичные
числа

Восьмеричные
числа

Десятичные
числа

Шестнадцатеричные
числа

1.3.2. ПЕРЕВОД ЧИСЕЛ ИЗ ПРОИЗВОЛЬНОЙ СС В ДЕСЯТИЧНУЮ И ОБРАТНО.

Перевод чисел из произвольной системы в десятичную. Для перевода числа из любой позиционной СС в десятичную необходимо использовать развернутую форму числа, заменяя, если это необходимо, буквенные обозначения соответствующими цифрами. Например:

1101 2 =1*2 3 +1*2 2 +0*2 1 +1*2 0 =13 10

17D.ECH=12·16 -2 + 14·16 -1 +13·16 0 + 7·16 1 + 1·16 2 =381.921875

Перевод чисел из десятичной СС в заданную.

1) Для преобразования целых чисел десятичной системы счисления в число любой системы счисления последовательно выполняют деление нацело на основание СС, пока не получат нуль. Числа, которые возникают как остаток от деления на основание СС, представляют собой последовательную запись разрядов числа в выбранной СС от младшего разряда к старшему. Поэтому для записи самого числа остатки от деления записывают в обратном порядке.

Например:

Читая остатки от деления снизу вверх, получим 111011011.

Проверка:

1*2 8 +1*2 7 +1*2 6 +0*2 5 +1*2 4 +1*2 3 +0*2 2 +1*2 1 +1*2 0 = 1+2+8+16+64+128+256=475 10 .

2) Для преобразования десятичных дробей десятичной СС в число любой СС последовательно выполняют умножение на основание системы счисления, пока дробная часть произведения не станет равной нулю. Полученные целые части являются разрядами числа в новой системе, и их необходимо представлять цифрами этой новой системы счисления. Целые части в дальнейшем отбрасываются.

Например : перевести число 0.375 10 в двоичную СС.

Полученный результат - 0.011 2 .

Необходимо отметить, что не каждое число может быть точно выражено в новой системе счисления, поэтому иногда вычисляют только требуемое количество разрядов дробной части, округляя последний разряд.

1.3.3. ПЕРЕВОД МЕЖДУ ОСНОВАНИЯМИ, СОСТАВЛЯЮЩИМИ СТЕПЕНЬ 2.

Для того, чтобы из восьмеричной системы счисления перевести число в двоичный код, необходимо каждую цифру этого числа представить триадой двоичных символов. Лишние нули в старших разрядах отбрасываются.

Например :

1234.777 8 = 001 010 011 100.111 111 111 2 = 1 010 011 100.111 111 111 2

1234567 8 = 001 010 011 100 101 110 111 2 = 1 010 011 100 101 110 111 2

Обратный перевод: каждая триада двоичных цифр заменяется восьмеричной цифрой, при этом, если необходимо, число выравнивается путем дописывания нулей перед целой частью или после дробной.

Например :

1100111 2 = 001 100 111 2 = 147 8

11.1001 2 = 011.100 100 2 = 3.44 8

110.0111 2 = 110.011 100 2 = 6.34 8

При переводах между двоичной и шестнадцатеричной СС используются четверки цифр. При необходимости выравнивание выполняется до длины двоичного числа, кратной четырем.

Например :

1234.AB77 16 = 0001 0010 0011 0100.1010 1011 0111 0111 2 =1 0010 0011 0100.1010 1011 0111 0111 2

CE4567 16 = 1100 1110 0100 0101 0110 0111 2

0.1234AA 16 = 0.0001 0010 0011 0100 1010 1010 2

1100111 2 = 0110 0111 2 = 67 16

11.1001 2 = 0011.1001 2 = 3.9 16

110.0111001 2 = 0110.0111 0010 2 = 65.72 16

При переходе из восьмеричного счисления в шестнадцатеричное счисление и обратно используется вспомогательный двоичный код числа.

Например :

1234567 8 = 001 010 011 100 101 110 111 2 = 0101 0011 1001 0111 0111 2 = 53977 16

0.12034 8 = 0.001 010 000 011 100 2 = 0.0010 1000 0011 1000 2 = 0.2838 16

120.34 8 = 001 010 000. 011 100 2 = 0101 0000.0111 0000 2 = 50.7 16

1234.AB77 16 = 0001 0010 0011 0100.1010 1011 0111 0111 2 =

001 001 000 110 100.101 010 110 111 011 100 2 = 11064.526734 8

CE4567 16 = 1100 1110 0100 0101 0110 0111 2 = 110 011 100 100 010 101 100 111 2 = 63442547 8

0.1234AA 16 =0.0001 0010 0011 0100 1010 1010 2 =0.000 100 100 011 010 010 101 010 2 =0.04432252 8

– Игорь (Администратор)

В рамках данной статьи, я расскажу вам что такое системы счисления , а так же какие они бывают.

Каждый день мы пользуемся различными системами счисления, например, десятичной. А если же вы больше знаете об информационных технологиях, то невозможно так же не упомянуть про двоичную, восьмеричную и шестнадцатеричную. Однако, что это такое и есть ли какие-то нюансы, знает далеко не каждый. Поэтому далее я постараюсь разложить все по полочкам.

Система счисления - это метод, определяющий запись чисел, а так же возможные математические операции над этими числами.

Чтобы было легче понять, рассмотрим простой пример. Допустим, не существует десятичной системы счисления и вам необходимо посчитать количество тарелок на столе. Во первых, для решения этой задачи вам необходимы какие-то ориентиры. Например, 1 спичка - это одна тарелка, а коробок - это 10 тарелок. Второй задачей является возможность как-то оперировать этими числами. Чтобы можно было добавлять или убирать тарелки со стола и вы могли бы их посчитать. Тут все привычно, добавилась тарелка - добавили спичку, унесли тарелку - убрали спичку, спичек стало 10, заменили их на коробок.

Вот это и есть пример простой системы счисления, состоящий из записи чисел (спичек, коробка) и математических операций (добавить, убрать).

Сам вопрос, как вести учет чисел уже давно стоял перед человечеством, поэтому существуют их градации.. И вот, как минимум, 3 типа:

1. Непозиционная система счисления - самые древний вид системы. Он подразумевает, что каждая цифра в числе не зависит от ее расположения (позиции, разряда). Например, придуманная чуть выше система - это непозиционная. Так как вы можете выкладывать спички и коробки в любом угодном вам порядке (хоть кружком, хоть наискосок) и от этого их общая сумма не изменится.

2. Позиционная система счисления (однородная) - данная система подразумевает, что каждый символ в купе с его позицией имеют смысл. Например, привычная нам десятичная система. В ней порядок следования числе важен и влияет на само число. Так 120 не равно 201, хотя сами цифры в них одинаковые. При этом важно отметить, что у позиционных однородных систем каждая позиция может принимать любое из базовых элементов исчисления. То есть, если речь идет о двоичной системе, то значение в любом разряде может быть 0 или 1. Для восьмеричной - от 0 до 7. И так далее.

3. Смешанная система счисления - как и следует из названия, это различные вариации систем. Чаще всего, они представляют собой модифицированные позиционные системы исчисления. Например, дата и время, в которой есть ограничения порядка следования чисел и их возможных значений.

Градации хоть и кажутся весьма простыми, но все же стоит помнить, что сегодня существует огромное количество систем счисления, которые применяются в разнообразных сферах. Это и криптография, и компьютеры, и многое многое другое. Кроме того, если рассматривать тот же пример про спички, то таких систем в обыденности придумывается много. Например, учет сделанных и не сделанных дел каждый может вести своеобразным образом (есть общая стопка дел, есть стопка сделанных дел, листок из одной перекладывается в другую в любом порядке по мере готовности).

Теперь, вы знаете о том, что такое системы счисления, зачем они нужны и какие они бывают.

Известно множество способов представления чисел. В любом случае число изображается символом или группой символов (словом) некоторого алфавита. Такие символы называют цифрами.

Системы счисления

Для представления чисел используются непозиционные и позиционные системы счисления.

Непозиционные системы счисления

Как только люди начали считать, у них появилась потребность в записи чисел. Находки археологов на стоянках первобытных людей свидетельствуют о том, что первоначально количество предметов отображали равным количеством каких-либо значков (бирок): зарубок, черточек, точек. Позже, для облегчения счета, эти значки стали группировать по три или по пять. Такая система записи чисел называется единичной (унарной) , так как любое число в ней образуется путём повторения одного знака, символизирующего единицу. Отголоски единичной системы счисления встречаются и сегодня. Так, чтобы узнать, на каком курсе учится курсант военного училища, нужно сосчитать, какое количество полосок нашито на его рукаве. Сами того не осознавая, единичной системой счисления пользуются малыши, показывая на пальцах свой возраст, а счетные палочки используется для обучения учеников 1–го класса счету. Рассмотрим различные системы счисления.

Единичная система – не самый удобный способ записи чисел. Записывать таким образом большие количества утомительно, да и сами записи при этом получаются очень длинными. С течением времени возникли иные, более удобные, системы счисления.

Древнеегипетская десятичная непозиционная система счисления . Примерно в третьем тысячелетии до нашей эры древние египтяне придумали свою числовую систему, в которой для обозначения ключевых чисел 1, 10, 100 и т.д. использовались специальные значки – иероглифы. Все остальные числа составлялись из этих ключевых при помощи операции сложения. Система счисления Древнего Египта является десятичной, но непозиционной. В непозиционных системах счисления количественный эквивалент каждой цифры не зависит от ее положения (места, позиции) в записи числа. Например, чтобы изобразить 3252 рисовали три цветка лотоса (три тысячи), два свернутых пальмовых листа (две сотни), пять дуг (пять десятков) и два шеста (две единицы). Величина числа не зависела от того, в каком порядке располагались составляющие его знаки: их можно было записывать сверху вниз, справа налево или вперемежку.

Римская система счисления . Примером непозиционной системы, которая сохранилась до наших дней, может служить система счисления, которая применялась более двух с половиной тысяч лет назад в Древнем Риме. В основе римской системы счисления лежали знаки I (один палец) для числа 1, V (раскрытая ладонь) для числа 5, X (две сложенные ладони) для 10, а для обозначения чисел 100, 500 и 1000 стали применять первые буквы соответствующих латинских слов (Сentum – сто, Demimille – половина тысячи, Мille – тысяча). Чтобы записать число, римляне разлагали его на сумму тысяч, полутысяч, сотен, полусотен, десятков, пятков, единиц. Например, десятичное число 28 представляется следующим образом:

XXVIII=10+10+5+1+1+1 (два десятка, пяток, три единицы).

Для записи промежуточных чисел римляне использовали не только сложение, но и вычитание. При этом применялось следующее правило: каждый меньший знак, поставленный справа от большего, прибавляется к его значению, а каждый меньший знак, поставленный слева от большего, вычитается из него. Например, IX – обозначает 9, XI – обозначает 11.

Десятичное число 99 имеет следующее представление:

XCIХ = –10+100–1+10.

Римскими цифрами пользовались очень долго. Еще 200 лет назад в деловых бумагах числа должны были обозначаться римскими цифрами (считалось, что обычные арабские цифры легко подделать). Римская система счисления сегодня используется, в основном, для наименования знаменательных дат, томов, разделов и глав в книгах.

Алфавитные системы счисления . Более совершенными непозиционными системами счисления были алфавитные системы. К числу таких систем счисления относились греческая, славянская, финикийская и другие. В них числа от 1 до 9, целые количества десятков (от 10 до 90) и целые количества сотен (от 100 до 900) обозначались буквами алфавита. В алфавитной системе счисления Древней Греции числа 1, 2, ..., 9 обозначались первыми девятью буквами греческого алфавита, и т.д. Для обозначения чисел 10, 20, ..., 90 применялись следующие 9 букв а для обозначения чисел 100, 200, ..., 900 – последние 9 букв.

У славянских народов числовые значения букв установились в порядке славянского алфавита, который использовал сначала глаголицу, а затем кириллицу.

В России славянская нумерация сохранилась до конца XVII века. При Петре I возобладала так называемая арабская нумерация, которой мы пользуемся и сейчас. Славянская нумерация сохранилась только в богослужебных книгах.

Непозиционные системы счисления имеют ряд существенных недостатков:

  • Существует постоянная потребность введения новых знаков для записи больших чисел.
  • Невозможно представлять дробные и отрицательные числа.
  • Сложно выполнять арифметические операции, так как не существует алгоритмов их выполнения.

Позиционные системы счисления

В позиционных системах счисления – количественный эквивалент каждой цифры зависит от ее положения (позиции) в коде(записи) числа. Ныне мы привыкли пользоваться десятичной позиционной системой - числа записываются с помощью 10 цифр. Самая правая цифра обозначает единицы, левее - десятки, ещё левее - сотни и т.д.

Например: 1) шестидесятеричная (Древний Вавилон)– первая позиционная система счисления. До сих пор при измерении времени используется основание равное 60 (1мин = 60с, 1ч = 60мин); 2) двенадцатеричная система счисления (широкое распространение получила в XIX в. число 12 – “дюжина”: в сутках две дюжины часов). Счёт не по пальцам, а по суставам пальцев. На каждом пальце руки, кроме большого, по 3 сустава – всего 12; 3) в настоящее время наиболее распространёнными позиционными системами счисления являются десятичная, двоичная, восьмеричная и шестнадцатеричная (широко используется в низкоуровневом программировании и вообще в компьютерной документации, поскольку в современных компьютерах минимальной единицей памяти является 8-битный байт, значения которого удобно записывать двумя шестнадцатеричными цифрами).

В любой позиционной системе число может быть представлено в виде многочлена.

Покажем, как представляют в виде многочлена десятичное число:

Типы систем счисления

Самое главное, что нужно знать о системе счисления – её тип: аддитивная или мультипликативная . В первом типе каждая цифра имеет своё значение, и для прочтения числа нужно сложить все значения использованных цифр:

XXXV = 10+10+10+5 = 35; CCXIX = 100+100+10–1+10 = 219;

Во втором типе каждая цифра может иметь разные значения в зависимости от своего местоположения в числе:

(иероглифы по порядку: 2, 1000, 4, 100, 2, 10, 5)

Здесь дважды использован иероглиф “2”, и в каждом случае он принимал разные значения “2000” и “20”.

2´ 1000 + 4´ 100+2´ 10+5 = 2425

Для аддитивной (“добавительной”) системы нужно знать все цифры-символы с их значениями (их бывает до 4-5 десятков), и порядок записи. Например, в Латинской записи если меньшая цифра записана перед большей, то производится вычитание, а если после, то сложение (IV = (5–1) = 4; VI = (5+1) = 6).

Для мультипликативной системы нужно знать изображение цифр и их значение, а так же основание системы счисления. Определить основание очень легко, нужно только пересчитать количество значащих цифр в системе. Если проще, то это число, с которого начинается второй разряд у числа. Мы, например, используем цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Их ровно 10, поэтому основание нашей системы счисления тоже 10, и система счисления называется “десятичная”. В вышеприведенном примере используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (вспомогательные 10, 100, 1000, 10000 и т. д. не в счет). Основных цифр здесь тоже 10, и система счисления – десятичная.

Как можно догадаться, сколько есть чисел, столько же может быть и оснований систем счисления. Но используются только самые удобные основания систем счисления. Как вы думаете, почему основание самой употребительной человеческой системы счисления 10? Да, именно потому, что на руках у нас 10 пальцев. “Но на одной то руке всего пять пальцев” – скажут некоторые и будут правы. История человечества знает примеры пятеричных систем счисления. “А с ногами – двадцать пальцев” – скажут другие, и будут тоже абсолютно правы. Именно так считали индейцы Майя. Это даже видно по их цифрам.

Очень интересно понятие “дюжина”. Всем известно, что это 12, но откуда появилось такое число – мало кто знает. Посмотрите на свои руки, вернее, на одну руку. Сколько фаланг на всех пальцах одной руки, не считая большого? Правильно, двенадцать. А большой палец предназначен отмечать отсчитанные фаланги.

А если на другой руке откладывать пальцами количество полных дюжин, то получим всем известную шестидесятеричную вавилонскую систему.

В разных цивилизациях считали по–разному, но и сейчас можно даже в языке, в названиях и изображениях цифр найти остатки совсем других систем счисления, когда–то использовавшихся этим народом.

Так у французов когда-то была двадцатеричная система счисления, поскольку 80 по-французски звучит как “четырежды двадцать”.

Римляне, или их предшественники использовали когда-то пятеричную систему, так как V ни что иное, как изображение ладони с отставленным большим пальцем, а X – это две таких же руки.

Представление чисел с помощью письменных знаков .

Система счисления:

  • даёт представления множества чисел (целых и/или вещественных);
  • даёт каждому числу уникальное представление (или, по крайней мере, стандартное представление);
  • отражает алгебраическую и арифметическую структуру чисел.

Системы счисления подразделяются на позиционные , непозиционные и смешанные .

Позиционные системы счисления

В позиционных системах счисления один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен. Изобретение позиционной нумерации, основанной на поместном значении цифр, приписывается шумерам и вавилонянам ; развита была такая нумерация индусами и имела неоценимые последствия в истории человеческой цивилизации. К числу таких систем относится современная десятичная система счисления , возникновение которой связано со счётом на пальцах. В средневековой Европе она появилась через итальянских купцов, в свою очередь заимствовавших её у мусульман.

Под позиционной системой счисления обычно понимается -ричная система счисления, которая определяется целым числом , называемым основанием системы счисления. Целое число без знака в -ричной системе счисления представляется в виде конечной линейной комбинации степеней числа :

, где - это целые числа, называемые цифрами , удовлетворяющие неравенству .

Каждая степень в такой записи называется весовым коэффициентом разряда . Старшинство разрядов и соответствующих им цифр определяется значением показателя (номером разряда). Обычно, в ненулевых числах , левые нули опускаются.

Если не возникает разночтений (например, когда все цифры представляются в виде уникальных письменных знаков), число записывают в виде последовательности его -ричных цифр, перечисляемых по убыванию старшинства разрядов слева направо:

Например, число сто три представляется в десятичной системе счисления в виде:

Наиболее употребляемыми в настоящее время позиционными системами являются:

В позиционных системах чем больше основание системы, тем меньшее количество разрядов (то есть записываемых цифр) требуется при записи числа.

Смешанные системы счисления

Смешанная система счисления является обобщением -ричной системы счисления и также зачастую относится к позиционным системам счисления. Основанием смешанной системы счисления является возрастающая последовательность чисел , и каждое число в ней представляется как линейная комбинация :

, где на коэффициенты , называемые как и прежде цифрами , накладываются некоторые ограничения.

Записью числа в смешанной системе счисления называется перечисление его цифр в порядке уменьшения индекса , начиная с первого ненулевого.

В зависимости от вида как функции от смешанные системы счисления могут быть степенными , показательными и т. п. Когда для некоторого , смешанная система счисления совпадает с показательной -ричной системой счисления.

Наиболее известным примером смешанной системы счисления является представление времени в виде количества суток, часов, минут и секунд. При этом величина « дней, часов, минут, секунд» соответствует значению секунд.

Факториальная система счисления

В факториальной системе счисления основаниями являются последовательность факториалов , и каждое натуральное число представляется в виде:

, где .

Факториальная система счисления используется при декодировании перестановок списками инверсий : имея номер перестановки, можно воспроизвести её саму следующим образом: число, на единицу меньшее номера (нумерация начинается с нуля) записывается в факториальной системе счисления, при этом коэффициент при числе i! будет обозначать число инверсий для элемента i+1 в том множестве, в котором производятся перестановки (число элементов меньших i+1, но стоящих правее его в искомой перестановке)

Пример: рассмотрим множество перестановок из 5 элементов, всего их 5! = 120 (от перестановки с номером 0 - (1,2,3,4,5) до перестановки с номером 119 - (5,4,3,2,1)), найдём 101-ую перестановку: 100 = 4!*4 + 3!*0 + 2!*2 + 1!*0 = 96 + 4; положим ti - коэффициент при числе i!, тогда t4 = 4, t3 = 0, t2 = 2, t1 = 0 , тогда: число элементов меньших 5, но стоящих правее равно 4; число элементов меньших 4, но стоящих правее равно 0; число элементов меньших 3, но стоящих правее равно 2; число элементов меньших 2, но стоящих правее равно 0 (последний элемент в перестановке «ставится» на единственное оставшееся место) - таким образом, 101-я перестановка будет иметь вид: (5,3,1,2,4) Проверка данного метода может быть осуществлена путём непосредственного подсчёта инверсий для каждого элемента перестановки.

Фибоначчиева система счисления основывается на числах Фибоначчи . Каждое натуральное число в ней представляется в виде:

, где - числа Фибоначчи, , при этом в коэффициентах есть конечное количество единиц и не встречаются две единицы подряд.

Непозиционные системы счисления

В непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения в числе. При этом система может накладывать ограничения на положение цифр, например, чтобы они были расположены в порядке убывания.

Биномиальная система счисления

Представление, использующее биномиальные коэффициенты

, где .

Система остаточных классов (СОК)

Представление числа в системе остаточных классов основано на понятии вычета и китайской теореме об остатках . СОК определяется набором взаимно простых модулей с произведением так, что каждому целому числу из отрезка ставится в соответствие набор вычетов , где

При этом китайская теорема об остатках гарантирует однозначность представления для чисел из отрезка .

В СОК арифметические операции (сложение, вычитание, умножение, деление) выполняются покомпонентно, если про результат известно, что он является целочисленным и также лежит в .

Недостатками СОК является возможность представления только ограниченного количества чисел, а также отсутствие эффективных алгоритмов для сравнения чисел, представленых в СОК. Сравнение обычно осуществляется через перевод аргументов из СОК в смешанную систему счисления по основаниям .

Система счисления Штерна–Броко - способ записи положительных рациональных чисел, основанный на дереве Штерна–Броко .

Системы счисления разных народов

Единичная система счисления

По-видимому, хронологически первая система счисления каждого народа, овладевшего счётом. Натуральное число изображается путём повторения одного и того же знака (чёрточки или точки). Например, чтобы изобразить число 26, нужно провести 26 чёрточек (или сделать 26 засечек на кости, камне и т.д.). Впоследствии, ради удобства восприятия больших чисел, эти знаки группируются по три или по пять. Затем равнообъёмные группы знаков начинают заменяться каким-либо новым знаком - так возникают прообразы будущих цифр.

Древнеегипетская система счисления

Вавилонская система счисления

Алфавитные системы счисления

Алфавитными системами счисления пользовались древние армяне, грузины, греки (ионическая система счисления), арабы (абджадия), евреи (см. гематрия) и другие народы Ближнего Востока. В славянских богослужебных книгах греческая алфавитная система была переведена на буквы кириллицы.

Еврейская система счисления

Греческая система счисления

Римская система счисления

Каноническим примером почти непозиционной системы счисления является римская, в которой в качестве цифр используются латинские буквы:
I обозначает 1,
V - 5,
X - 10,
L - 50,
C - 100,
D - 500,
M - 1000

Например, II = 1 + 1 = 2
здесь символ I обозначает 1 независимо от места в числе.

На самом деле, римская система не является полностью непозиционной, так как меньшая цифра, идущая перед большей, вычитается из неё, например:

IV = 4, в то время как:
VI = 6

Система счисления майя

См. также

Примечания

Ссылки

  • Гашков С. Б. Системы счисления и их применение . - М .: МЦНМО , 2004. - (Библиотека «Математическое просвещение»).
  • Фомин С. В. Системы счисления . - М .: Наука, 1987. - 48 с. - (Популярные лекции по математике).
  • Яглом И. Системы счисления // Квант . - 1970. - № 6. - С. 2-10.
  • Цифры и системы счисления . Онлайн Энциклопедия Кругосвет.
  • Стахов А. Роль систем счисления в истории компьютеров .
  • Микушин А. В. Системы счисления. Курс лекций "Цифровые устройства и микропроцессоры"
  • Butler J. T., Sasao T. Redundant Multiple-Valued Number Systems В статье рассмотрены системы счисления, использующие цифры больше единицы и допускающие избыточность в представлении чисел

Wikimedia Foundation . 2010 .

В непозиционных системах счисления величина, обозначающая цифру, не зависит от положения в числе. К тому же, система может накладывать ограничения на расстановку цифр, например , чтобы цифры располагались по убыванию.

Существуют такие непозиционные системы счисления:

Единичная система счисления,

Пятеричная система счисления (Счёт на пятки́),

Древнеегипетская система счисления,

Вавилонская система счисления,

Алфавитные системы счисления,

Еврейская система счисления,

Греческая система счисления,

Римская система счисления,

Система счисления майя,

Кипу инков,

Рассмотрим некоторые из, приведенных выше, систем счисления.

Единичная система счисления.

С первых попыток научиться считать у людей возникла необходимость записи чисел. Сначала это было легко — зарубка либо черточка на любой поверхности отвечала за один предмет. Таким образом возникла первая система счисления — единичная .

Число в единичной системе счисления представляет собой строку из черточек (палочек), количество которых равно значению данного числа. Таким образом, урожай из 100 фиников будет равен числу, состоящему из 100 черточек.

В более позднее время для упрощения восприятия больших чисел, эти знаки стали группировать по три или по пять. Далее равнообъёмные группы знаков начали заменять новым знаком — так возникли прообразы современных цифр.

У данной системы есть значительные недостатки — чем больше число, тем длиннее строка из палочек. Кроме того, существует большая вероятность в записи числа, пропустив или случайно дописав палочку.

Изначально в счете использовали пальцы рук, поэтому первые знаки появились для групп из 5 и 10 штук (единиц). Все это позволило создать более удобные системы записи чисел.

Древнеегипетская десятичная система счисления.

В Древнем Египте использовали свои символы (цифры) для обозначения чисел 1, 10, 102, 103, 104, 105, 106, 107 . Вот некоторые из них:

Почему мы ее называем десятичной? Как указано выше — люди начали группировать символы. В Египте — решили группировать по 10, оставив без изменений цифру “1”. Здесь, число 10 называется основанием десятичной системы счисления , а все символы — представление числа 10 в определенной степени.

Числа в древнеегипетской системе счисления записывали, в виде комбинаций таких символов, и все они повторялись не больше 9 раз. Результатом было сумма элементов числа. Этот метод получения значения свойственен каждой непозиционной системе счисления. Для примера посмотрите на запись числа 345:

Вавилонская шестидесятеричная система счисления.

В вавилонской системе счисления использовали только 2 символа: “прямой” клин — для единиц и “лежащий” — для десятков. Для определения значения числа нужно изображение числа разбить на разряды справа налево. Новый разряд начинается с появления прямого клина после лежачего. Для примера посмотрим на число 32:

Число 60 и все его степени так же обозначаются прямым клином, что и “1”. Поэтому вавилонская система счисления получила название шестидесятеричной системы счисления .

Все числа от 1 до 59 вавилоняне записывали в десятичной непозиционной системе, а значения больше 59 — в позиционной с основанием 60. Например, число 92:

Запись числа была не конкретной, так как не было цифры, которая обозначала бы нуль. Представление числа 92 могло обозначать не только 92=60+32 , но и, например, 3632=3600+32 . Для определения абсолютного значения числа они ввели новый символ для обозначения пропущенного шестидесятеричного разряда, что соответствует появлению цифры 0 в записи десятичного числа:

Значит, число 3632 записывают так:

Шестидесятеричная вавилонская система — первая система счисления, которая частично основана на позиционном принципе . Эту систему счисления используют и сейчас, например , для определения времени — час состоит из 60 минут, а минута из 60 секунд.

Римская система счисления.

Римская система счисления немного похожа с египетской. Здесь для обозначения чисел 1, 5, 10, 50, 100, 500 и 1000 используют заглавные латинские буквы I, V, X, L, C, D и M соответственно. Число в римской системе счисления — это набор стоящих подряд цифр.

Способы определения значения числа:

  • Значение числа соответствует сумме значений его цифр. Например , число 32 в римской системе счисления записывается так XXXII=(X+X+X)+(I+I)=30+2=32
  • Когда слева от большей цифры стоит меньшая, то значение это разность между большей и меньшей цифрами. Кроме того, левая цифра может быть меньше правой максимум на 1 порядок: т.е. перед L(50) и С(100) из «младших» может быть лишь X(10) , перед D(500) и M(1000) — только C(100) , перед V(5) — только I(1) ; число 444 в римской системе счисления выглядит так:

CDXLIV = (D-C)+(L-X)+(V-I) = 400+40+4=444.

  • Значение равно сумме значений групп и цифр, не подходящих под 1 и 2 пункты.