Биологическое окисление. Тканевое дыхание

Итак, клеточное дыхание происходит в клетке.

Но где именно? Какая органелла осуществляет этот процесс?

Основной этап клеточного дыхания осуществляется в . Как известно, основной продукт работы митохондрии — молекулы АТФ — синоним понятия «энергия» в биологии. Действительно, основным продуктом этого процесса является энергия, молекулы АТФ.

АТФ — это молекула — синоним энергии в биологии. Расшифровывется как Аденозинтрифосфат или Аденозинтрифосфорная кислота. Как видно из рисунка формулы, в составе молекулы есть:

  1. три связи с остатками фосфорной кислоты, при разрыве которых выделяется большое количество энергии,
  2. углевод рибоза (пятиатомый сахар) и
  3. азотистое основание

1 Этап клеточного дыхания — подготовительный

Каким образом вещества попадают в клетки? В процессе пищеварения организма. Суть процесса пищеварения — расщепление полимеров, поступающих в организм с пищей, до мономеров:

  • расщепляются до аминокислот;
  • — до глюкозы;
  • расщепляются до глицерина и жирных кислот.

Т.е. в клетку поступают уже мономеры.

2 Этап клеточного пищеварения

Гликолиз — ферментативный процесс последовательного расщепления глюкозы в клетках, сопровождающийся синтезом АТФ.

Гликолиз при аэробных условиях ведёт к образованию пировиноградной кислоты (ПВК) (пирувата),

гликолиз в анаэробных условиях (бескислородных или при недостатке кислорода) ведёт к образованию молочной кислоты (лактата).

CH 3 -CH(OH)-COOH

Процесс идет с участием молекул фосфорной кислоты, поэтому называется окислительное фосфорилирование

Гликолиз является основным путём глюкозы в организме животных.

Превращения происходят в , т.е. процесс будет однозначно анаэробным: молекула глюкозы расщепится до ПВК — пировиноградной кислоты с выделением 2 молекул АТФ:

3 Этап клеточного пищеварения (кислородный)

Поступая в митохондрию, происходит окисление: ПВК под действием кислорода расщепляется до углекислого газа (суммарное уравнение):

Вначале отщепляется один углеродный атом пировиноградной кислоты. При этом образуется углекислый газ, энергия (она запасается в одной молекуле НАДФ) и двухуглеродная молекула - ацетильная группа. Затем реакционная цепь поступает в метаболический координационный центр клетки - цикл Кребса .

Цикл Кребса

(цикл лимонной кислоты)

Цикл Кребса — это реакции, которые начинаются, когда определенная входящая молекула соединяется с другой молекулой, выполняющей функцию «помощника». Такая комбинация инициирует серию других химических реакций, в которых образуются молекулы-продукты и в конце воссоздается молекула-помощник, которая может начать весь процесс вновь.

Для переработки энергии, запасенной в одной молекуле глюкозы , цикл Кребса нужно пройти дважды

Процесс многостадийный, и в нем, помимо различных кислот с интересными названиями участвуют коферменты (КоА).

Что такое коферменты?

(коэнзимы)

  • это органические вещества небольшого размера
  • они способны соединяться с белками (или прямо с ферментами, у которых, кстати, белковая природа), образуя активное вещество, косплекс, которое будет являться чем-то вроде катализатора.

Приставка «ко-» — это как «со-» — сопродюсер, соотечественник и т.п. Т.е. «вместе, с «

Гликолиз - катаболический путь исключительной важности.

Он обеспечивает энергией клеточные реакции, в том числе и синтез белка.

Промежуточные продукты гликолиза используются при синтезе жиров.

Пируват также может быть использован для синтеза других соединений. Благодаря гликолизу производительность митохондрий и доступность кислорода не ограничивают мощность мышц при кратковременных предельных нагрузках.

Тканевое дыхание представляет собой комплекс окислительно-восстановительных реакций, протекающих в клетках с участием кислорода. Процесс окисления сопровождается отдачей электронов, а процесс восстановления - их присоединением. В роли акцептора электронов, г.е. окислителя, выступает кислород, так что основным уравнением реакции потребления 0 2 в клетках аэробных организмов будет

Эта реакция хорошо всем известна как реакция взрыва гремучего газа, при которой высвобождается значительное количество энергии. В живых системах, конечно, взрыва не происходит, так как водород присутствует в них не в свободной молекулярной форме, а является частью органических соединений и присоединяется к кислороду не сразу, а постепенно через ряд промежуточных переносчиков - дыхательных ферментов. Выделяющаяся энергия в такой системе запасается в форме градиента концентрации протонов.

В роли катализаторов процессов тканевого дыхания выступают ферменты класса оксидоредуктаз. Эти ферменты располагаются на складках внутренней мембраны митохондрий, где и происходит завершающая процесс реакция - образование воды.

Дыхательные ферменты располагаются на мембране упорядоченно, формируя четыре полиферментных комплекса (рис. 3.13).

Рис. 3.13. Последовательность включения ферментативных комплексов (1-4) в процесс тканевого дыхания:

сокращения расшифрованы в тексте

В качестве переносчиков водорода в них выступают небольшие органические молекулы: нефосфорилированный и фосфорилированный нико- тинамидадениндинуклеотид (НАД+, НАДФ) - производные никотиновой кислоты (витамина РР); флавинадениндинуклеотид и флавинмононукле- отид (ФАД, ФМН) - производные рибофлавина (витамина В 2); хорошо растворимый в мембранных липидах убихинон (кофермент Q ) и группа гемсодержащих белков (цитохромы а, а 3 , Ь, с). Важную роль в электрон- транспортной цепи митохондрий играют железо, которое входит в состав гема цитохромов и комплекса FcS, а также медь.

Работа дыхательной цепи митохондрий завершается реакцией, катализируемой ферментом цитохром-с-оксидазой, при которой электроны передаются непосредственно кислороду. Молекула кислорода принимает четыре электрона, и формируются две молекулы воды.

Перенос электронов по дыхательной цепи сопровождается перекачкой протонов из матрикса митохондрий в межмембранное пространство и формированием на внутренней мембране трансмембранного градиента протонов. Этот градиент используется АТФ-синтазой (ферментным комплексом) для синтеза АТФ из АДФ (см. также т. 1, гл. 1).

Прохождения через внутреннюю мембрану митохондрий по электрохимическому градиенту четырех протонов достаточно для синтеза и переноса из митохондрии в цитоплазму одной молекулы АТФ. Так как в процессе образования двух молекул воды в межмембранное пространство переносится 20 протонов, то запасенной таким образом энергии хватает на синтез пяти молекул АТФ. Существует и укороченный путь, когда переносится 12 протонов и синтезируется три молекулы АТФ.

Описанный механизм является основным путем синтеза АТФ клетками в аэробных условиях и называется окислительным фосфорилированием (рис. 3.14).


Рис. 3.14.

1-4 - ферментные комплексы электронно-транспортной цепи

Энергия переноса электронов может использоваться не на синтез АТФ, а на получение тепла. Такой эффект называется разобщением окислительного фосфорилирования и наблюдается в норме в бурой жировой ткани. Роль разобщителя в ней берет на себя особый белок термогенин.

Присоединение четырех электронов к молекуле кислорода приводит к образованию воды. Передача меньшего количества электронов вызывает образование активных форм кислорода (АФК): если присоединяется только один электрон - образуется супероксид ион-радикал, если два электрона - пероксид ион-радикал, если три - гидроксил ион-радикал. Все эти радикалы необычайно химически активны и могут оказывать на клетку повреждающие воздействия (особенно в плане разрушения мембран). Помимо митохондрий, АФК могут образовываться другими ферментными системами в мембранах эндоплазматической сети. В здоровом организме образование АФК контролируется различными антиоксидантными системами: ферментативной и неферментативной. Ферментативную систему составляют такие ферменты, как супероксиддисмутаза, каталаза, глутатионпероксидаза и другие, а неферментативную - витамины Е, С, А, мочевая кислота и ряд других веществ.

АФК не только повреждают клетки, но могут выполнять и защитную функцию. Так, например, макрофаги используют продукцию АФК для разрушения фагоцитируемых микроорганизмов.

Тканевое дыхание

клеточное дыхание, совокупность ферментативных процессов, протекающих при участии кислорода воздуха в клетках органов и тканей, в результате чего продукты расщепления углеводов, жиров, белков окисляются до углекислого газа и воды, а значит, часть освобождающейся энергии запасается в форме богатых энергией, или макроэргических соединений (См. Макроэргические соединения). Т. д. отличают от внешнего дыхания (См. Дыхание) - совокупности физиологических процессов, обеспечивающих поступление в организм кислорода и выведение из него углекислого газа. Многие ферменты, катализирующие эти реакции, находятся в особых клеточных органоидах - митохондриях (См. Митохондрии).

На все проявления жизни (См. Жизнь) - рост, движение, раздражимость, самовоспроизведение и др. - организм расходует энергию. Формой энергии, пригодной для использования клетками, является энергия химических связей (главным образом фосфатных) в макроэргических соединениях - аденозинтрифосфорной кислоте (АТФ) и др. Для синтеза АТФ необходим приток энергии извне. По способам извлечения энергии существует принципиальное различие между автотрофными организмами (См. Автотрофные организмы) и гетеротрофными организмами (См. Гетеротрофные организмы). Клетки зелёных растений - наиболее типичных автотрофов - в процессе фотосинтеза используют энергию солнечного света для синтеза АТФ и глюкозы. (Образование из глюкозы более сложных молекул происходит в клетках растений также в процессе Т. д.) В клетках гетеротрофов - животных и человека - единственным источником энергии является энергия химических связей молекул пищевых веществ. Молекулы различных соединений, выполняющие роль биологического «топлива» (глюкоза, жирные кислоты, некоторые аминокислоты), образовавшись в клетках животного организма или поступив в кровь из пищеварительного тракта, претерпевают ряд последовательных химических превращений. В процессе Т. д. можно наметить три основные стадии: 1) окислительное образование ацетилкофермента А (активная форма уксусной кислоты) из пировиноградной кислоты (промежуточный продукт расщепления глюкозы), жирных кислот и аминокислот; 2) разрушение ацетильных остатков в Трикарбоновых кислот цикл е с освобождением 2 молекул углекислого газа и 4 пар атомов водорода, частично акцептируемых коферментами Никотинамидадениндинуклеотид ом и Флавинадениндинуклеотид ом и частично переходящих в раствор в виде протонов; 3) перенос электронов и протонов к молекулярному кислороду (образование H 2 O) - процесс, катализируемый набором дыхательных ферментов и сопряжённый с образованием АТФ (так называемое Окислительное фосфорилирование). Первые две стадии подготавливают третью, в ходе которой в результате последовательных окислительно-восстановительных реакций происходит освобождение основной части энергии, вырабатываемой в клетке. При этом около 50% энергии в результате окислительного фосфорилирования запасается в форме богатых энергией связей АТФ, а остальная часть её выделяется в виде тепла.

Т. д. обеспечивает образование и постоянное пополнение АТФ в клетках. В случае недостатка в снабжении клеток животных и человека кислородом запасы АТФ не исчерпываются сразу. Их пополнение может происходить в результате включения дополнительных механизмов - систем анаэробного (без участия кислорода) распада углеводов - Гликолиз а и гликогенолиза. Однако этот путь энергетически во много раз менее эффективен и не может обеспечить функции и целостность структуры органов и тканей. Биологическая роль Т. д. не исчерпывается существенным вкладом в энергетический обмен организма. На различных его этапах образуются молекулы органических соединений, используемых клетками в качестве промежуточных продуктов для различных биосинтезов. См. также Аденозинфосфорные кислоты , Биоэнергетика , Обмен веществ , Окисление биологическое .

Лит.: Северин С. Е., Биологическое окисление и окислительное фосфорилирование, в кн.: Химические основы процессов жизнедеятельности, М., 1962; Ленинджер А., Превращение энергии в клетке, в кн.: Живая клетка, пер. с англ., 2 изд., М., 1962; его же. Биохимия, пер. с англ., М., 1974; Скулачев В. П., Аккумуляция энергии в клетке, М., 1969; Вилли К., Детье В., Биология. (Биологические процессы и законы), пер. с англ., М., 1974.

В. Г. Иванова.

Схема превращения энергии в живых клетках: тканевое дыхание, образование АТФ и пути его использования.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Тканевое дыхание" в других словарях:

    тканевое дыхание - – аэробный распад органических веществ в живых тканях … Краткий словарь биохимических терминов

    - … Википедия

    ДЫХАНИЕ - ДЫХАНИЕ. Содержание: Сравнительная физиология Д.......... 534 Дыхательный аппарат............. 535 Механизм вентиляции легких......... 537 Регистрация дыхательных движении..... 5 S8 Частота Д., сила дыхат. мышц и глубина Д. 539 Классификация и… … Большая медицинская энциклопедия

    Совокупность процессов, обеспечивающих поступление в организм кислорода и удаление углекислого газа (внешнее дыхание), а также использование кислорода клетками и тканями для окисления органических веществ с освобождением энергии, необходимой для… … Большой Энциклопедический словарь

    Современная энциклопедия

    Дыхание - ДЫХАНИЕ, совокупность процессов, обеспечивающих поступление в организм кислорода и удаление диоксида углерода (внешнее дыхание), а также использование кислорода клетками и тканями для окисления органических веществ с освобождением энергии,… … Иллюстрированный энциклопедический словарь

    Диафрагмальный (брюшной) тип дыхания у человека У этого термина существуют и другие значения, см. Клеточное дыхание … Википедия

    ДЫХАНИЕ, ДЫХАНЬЕ, я; ср. 1. Вбирание и выпускание воздуха лёгкими или (у некоторых животных) иными соответствующими органами как процесс поглощения кислорода и выделения углекислого газа живыми организмами. Органы дыхания. Шумное, тяжёлое,… … Энциклопедический словарь

    I Дыхание (respiratio) совокупность процессов, обеспечивающих поступление из атмосферного воздуха в организм кислорода, использование его в биологическом окислении органических веществ и удаление из организма углекислого газа. В результате… … Медицинская энциклопедия

    Совокупность процессов, которые обеспечивают поступление в организм кислорода и выделение из него углекислого газа (внешнее Д.) и использование кислорода клетками и тканями для окисления органических веществ с освобождением содержащейся в … Большая советская энциклопедия

Книги

  • Проблемы биологической физики , Л. А. Блюменфельд , В книге рассматриваются те проблемы теоретической биологии, которые можно пытаться изучать на основе методов и принципов физики. Детально анализируется ряд важнейших проблем современной… Категория: Основы медицинских знаний Серия: Физика жизненных процессов Издатель:

Тканевое дыхание - это совокупность реакций аэробного окисления органических молекул в клетке, при которых молекулярный кислород является обязательным субстратом для образования продуктов окисления. Однако использоваться клеткой кислород может для разных задач:

1. во внутренней мембране митохондрий кислород является конечным акцептором электронов от окисляемых субстратов (НАДН·Н + или ФАДН 2) с возможностью включения его активной формы (оксид-анион; атомарный кислород) в молекулу воды – одного из конечных продуктов окисления органических молекул в клетках аэробного типа;

2. монооксигеназные системы внутренней мембраны митохондрий или мембран эндоплазматического ретикулума (ЭПР) используют один атом молекулярного кислорода для его включения в молекулы органических субстратов с целью модификации их структуры и появления таких функциональных групп, как гидроксильная, кето-, альдегидная, карбоксильная группы;

3. диоксигеназные системы ЭПР используют два атома молекулярного кислорода для образования перекисных соединений тип R 2 O 2 . Такие перекиси клетка утилизирует благодаря антиоксидантным ферментативным системам: глутатионпероксидаза и др..

Задача 1 выполняется клеткой аэробного типа преимущественно тогда, когда в клетке появляются вещества-энергоисточники, и есть необходимость для продукции энергии путем включения этих веществ–энергоисточников в катаболические пути. Тканевое дыхание клетки можно представить в виде стадий, их три:

1 стадия тканевого дыхания - 2-я стадия катаболических процессов;

2 стадия тканевого дыхания – Цикл Трикарбоновых Кислот (ЦТК);

3 стадия тканевого дыхания - функция дыхательной цепи внутренней мембраны митохондрий.

1-я и 2-я стадии тканевого дыхания продуцируют в цитозоле и в матриксе митохондрий восстановленные формы коферментов и простетических групп – потенциальные доноры электронов в дыхательную цепь внутренней мембраны митохондрий. Именно в этой мембране присутствует специальный комплекс ферментов и липофильных веществ (убихинон; коэнзим Q), который переносит электроны от восстановленных форм коферментов (НАДН) и простетических групп (ФАДН 2) на атомарный кислород.

В структуре митохондрий выделяют наружную мембрану, внутреннюю мембрану, матрикс, межмембранное пространство. В матриксе и, частично, во внутренней мембране локализованы процессы первой и второй стадий тканевого дыхания: бета-окисление высших жирных кислот, реакции обмена аминокислот - окислительное дезаминирование, трансаминирование, цикл Кребса (ЦТК) за исключением сукцинатдегидрогеназной реакции.

Обе мембраны пронизывают транспортные системы, отвечающие за:

1. транспорт аминокислот;

2. транспорт АТФ/АДФ;

3. транспорт ионов;

4. челночные системы (малат-аспартатная, глицеролфосфатная), осуществляющие транспорт электронов и протонов от цитозольных форм восстановленных коферментов в матрикс и во внутреннюю мембрану;

5. транспорт трикарбоновых кислот;

6. транспорт ацилов ВЖК;

7. транспорт катионов и анионов.

Транспортные системы обеспечивают постоянство состава матрикса митохондрии, обмен веществами с цитоплазмой, доставку образующихся субстратов из матрикса в цитоплазму для нужд клетки.

Наиболее важной с энергетической точки зрения является третья стадия тканевого дыхания, т.е. функция дыхательной цепи внутренней мембраны митохондрий. Дыхательная цепь состоит из переносчиков электронов от восстановленных форм коферментов на кислород. Переносчики элетронов объединены в комплексы дыхательной цепи. Деление участников дыхательной цепи на комплексы (I-IV) возникло в ходе экспериментальных исследований по выделению и разделению компонентов дыхательной цепи с целью изучения их структуры и функции.

Комплекс I дыхательной цепи состоит из трансмембранного белка-фермента НАДН-дегидрогеназы (небелковая часть – ФМН) и железосеросодержащих белков (FeS-белки). Из матрикса НАДН-формы мигрируют во внутреннюю мембрану митохондрий, где их захватывает флавопротеин НАДН–дегидрогеназа. Протекает окислительно-восстановительная реакция:

НАДН·Н + + ФМН·ДГаза ® НАД + + ФМНН 2 ·ДГаза

ФМН ФМНН 2

Восстановленная форма НАДН-ДГазы через FeS-белки комплекса I передает электроны убихинону (КоQ), а протоны убихинон может захватывать из матрикса:

KoQ KoQH 2

Убихинон - очень липофильная структура, свободно двигающаяся в направлении от поверхности внутренней мембраны, обращенной к матриксу (КоQH 2), к поверхности внутренней мембраны, обращенной к межмембранному пространству (ММП) и обратно (КоQ). Восстановленная форма убихинона отдает электроны комплексу III дыхательной цепи, содержащему цитохромы в , с 1 и FeS-белки. Цитохромы в и с 1 – гемопротеины третичной структуры. Особенностью гемов является наличие в них катионов железа, меняющих степень окисления Fe² + /Fe³ + . Гем цитохромов в , с 1 или с способен принять только 1 ē, поэтому для передачи 2ē, которые транспортирует дыхательная цепь от окисляемого субстрата (восстановленной формы кофермента), нужны два цитохрома каждого типа. Цитохромы в , с 1 и с не способны принимать в свою структуру ионы Н + . Следующим акцептором электронов является цитохром с (самый подвижный во внутренней мембране цитохром; не входит ни в один комплекс), это тоже гемопротеин третичной структуры.

Восстановленная форма цитохрома с (Fe² +) отдает далее электроны цитохром с -оксидазе (ЦХО). Цитохром с -оксидаза – трансмембранный белок, гемопротеин четвертичной структуры, состоящий из шести субъединиц: 4а и 2а 3 , последние содержат только Cu² + /Cu + . Данный белок называют также комплексом IV дыхательной цепи. Цитохром с -оксидаза, получая 4ē от цитохромов С (Fe² +), приобретает высокое сродство к молекулярному кислороду. Каждая пара электронов переходит на 1 атом молекулярного кислорода с формированием оксид-аниона, которые соединяясь с четырьмя протонами дают образование эндогенной воды: 4Н + +4 ē +О 2 →2Н 2 О

Клеточное дыхание - это окисление органических веществ в клетке, в результате которого синтезируются молекулы АТФ. Исходным сырьем (субстратом) обычно служат углеводы, реже жиры и еще реже белки. Наибольшее количество молекул АТФ дает окисление кислородом, меньшее – окисление другими веществами и переносом электронов.

Углеводы, или полисахариды, перед использованием в качестве субстрата клеточного дыхания распадаются до моносахаридов. Так у растений крахмал, а у животных гликоген гидролизуются до глюкозы.

Глюкоза является основным источником энергии почти для всех клеток живых организмов.

Первый этап окисления глюкозы - гликолиз. Он не требует кислорода и характерен как при анаэробном, так и аэробном дыхании.

Биологическое окисление

Клеточное дыхание включает в себя множество окислительно-восстановительных реакций, в которых происходит перемещение водорода и электронов от одних соединений (или атомов) к другим. При потери электрона каким-либо атомом происходит его окисление; при присоединении электрона - восстановление. Окисляемое вещество - это донор, а восстанавливаемое - акцептор водорода и электронов. Окислительно-восстановительные реакции, протекающие в живых организмах носят название биологического окисления, или клеточного дыхания.

Обычно при окислительных реакциях происходит выделение энергии. Причина этого кроется в физических законах. Электроны в окисляемых органических молекулах находятся на более высоком энергетическом уровне, чем в продуктах реакции. Электроны, переходя с более высокого на более низкий энергетический уровень, высвобождают энергию. Клетка умеет фиксировать ее в связях молекул - универсальном «топливе» живого.

Наиболее распространенным в природе конечным акцептором электронов является кислород, который восстанавливается. При аэробном дыхании в результате полного окисления органических веществ образуются углекислый газ и вода.

Биологическое окисление протекает по-этапно, в нем участвуют множество ферментов и соединения, переносящие электроны. При ступенчатом окислении электроны перемещаются по цепи переносчиков. На определенных этапах цепи происходит выделение порции энергии, достаточной для синтеза АТФ из АДФ и фосфорной кислоты.

Биологическое окисление весьма эффективно по-сравнению с различными двигателями. Около половины выделяющейся энергии в конечном итоге фиксируется в макроэргических связях АТФ. Другая часть энергии рассеивается в виде тепла. Поскольку процесс окисления ступенчатый, то тепловая энергия выделяется понемногу и не повреждает клетки. В то же время она служит для поддержания постоянной температуры тела.

Аэробное дыхание

Различные этапы клеточного дыхания у аэробных эукариот происходят

    в матриксе митохондрий – , или цикл трикарбоновых кислот,

    на внутренней мембране митохондрий – , или дыхательная цепь.

На каждом из этих этапов из АДФ синтезируется АТФ, больше всего на последнем. Кислород в качестве окислителя используется только на этапе окислительного фосфорилирования.

Суммарные реакции аэробного дыхания выглядит следующим образом.

Гликолиз и цикл Кребса: C 6 H 12 O 6 + 6H 2 O → 6CO 2 + 12H 2 + 4АТФ

Дыхательная цепь: 12H 2 + 6O 2 → 12H 2 O + 34АТФ

Таким образом биологическое окисление одной молекулы глюкозы дает 38 молекул АТФ. На самом деле нередко бывает меньше.

Анаэробное дыхание

При анаэробном дыхании в окислительных реакциях акцептор водорода НАД не передает водород в конечном итоге на кислород, которого в данном случае нет.

В качестве акцептора водорода может быть использована пировиноградная кислота, образующаяся при гликолизе.

У дрожжей пируват сбраживается до этанола (спиртовое брожение). При этом в процессе реакций образуется также углекислый газ и используется НАД:

CH 3 COCOOH (пируват) → CH 3 CHO (ацетальдегид) + CO 2

CH 3 CHO + НАД · H 2 → CH 3 CH 2 OH (этанол) + НАД

Молочнокислое брожение происходит в животных клетках, испытывающих временный недостаток кислорода, и у ряда бактерий:

CH 3 COCOOH + НАД · H 2 → CH 3 CHOHCOOH (молочная кислота) + НАД

Оба брожения не дают выхода АТФ. Энергию в данном случае дает только гликолиз, и составляет она всего две молекулы АТФ. Значительная часть энергии глюкозы так и не извлекается. Поэтому анаэробное дыхание считается малоэффективным.