Хим элемент сера в таблице менделеева. Периодическая система элементов менделеева - сера

Сера (англ. Sulfur, франц. Sufre, нем. Schwefel) в самородном состоянии, а также в виде сернистых соединений известна с самых древнейших времен. С запахом горящей серы, удушающим действием сернистого газа и отвратительным запахом сероводорода человек познакомился, вероятно, еще в доисторические времена. Именно из-за этих свойств сера использовалась жрецами в составе священных курений при религиозных обрядах. Сера считалась произведением сверхчеловеческих существ из мира духов или подземных богов. Очень давно сера стала применяться в составе различных горючих смесей для военных целей. Уже у Гомера описаны "сернистые испарения", смертельное действие выделений горящей серы. Сера, вероятно, входила в состав "греческого огня", наводившего ужас на противников. Около VIII в. китайцы стали использовать ее в пиротехнических смесях, в частности, в смеси типа пороха. Горючесть серы, легкость, с которой она соединяется с металлами с образованием сульфидов (например, на поверхности кусков металла), объясняют то, что ее считали "принципом горючести" и обязательной составной частью металлических руд. Пресвитер Теофил (XI в.) описывает способ окислительного обжига сульфидной медной руды, известный, вероятно, еще в древнем Египте. В период арабской алхимии возникла ртутно-серная теория состава металлов, согласно которой сера почиталась обязательной составной частью (отцом) всех металлов. В дальнейшем она стала одним из трех принципов алхимиков, а позднее "принцип горючести" явился основой теории флогистона. Элементарную природу серы установил Лавуазье в своих опытах по сжиганию. С введением пороха в Европе началось развитие добычи природной серы, а также разработка способа получения ее из пиритов; последний был распространен в древней Руси. Впервые в литературе он описан у Агриколы. Происхождение лат. Sulfur неясно. Полагают, что это название заимствовано от греков. В литературе алхимического периода сера часто фигурирует под различными тайными названиями. У Руланда можно найти, например, названия Zarnec (объяснение "яйца с огнем"), Thucios (живая сера), Terra foetida, spiritus foetens, Scorith, Pater и др. Древнерусское название "сера" употребляется уже очень давно. Под ним подразумевались разные горючие и дурно пахнущие вещества, смолы, физиологические выделения (сера в ушах и пр.). По-видимому, это название происходит от санскритского сirа (светло-желтый). С ним связано слово "серый", т. е. неопределенного цвета, что, в частности, относится к смолам. Второе древнерусское название серы - жупел (сера горючая) - тоже содержит в себе понятие не только горючести, но и дурного запаха. Как объясняют филологи, нем. Schwefel имеет санскритский корень swep (спать, англо-саксонское sweblan - убивать), что, возможно, связано с ядовитыми свойствами сернистого газа.

S 16

Сера

t o кип. (o С) 444,674 Степ.окис. -2 +4 +6

32,066

t o плав.(o С) 119,3 Плотность 2070(a) 1960(b)
3s 2 3p 4 ОЭО 2,60 в зем. коре 0,052 %

Сера — одно из немногих веществ, которыми уже несколько тысяч дет назад оперировали первые «химики». Она стала служить человечеству задолго до того, как заняла в таблице Менделеева клетку под 16.

Об одном из самых древних (хотя и гипотетических!) применении серы рассказывают многие старинные книги. Как источник тепла при термообработке грешников серу живописуют и Новый и Ветхий заветы. И если книги такого рода не дают достаточных основании для археологических раскопок в поисках остатков райских кущ или геенны огненной, то их свидетельство о том, что древние были знакомы с серой и некоторыми ее свойствами, можно принять на веру.

Одна из причин этой известности — распространенность самородной серы в странах древнейших цивилизаций, Месторождения этого желтого горючего вещества разрабатывались греками и римлянами, особенно в Сицилии, которая вплоть до конца прошлого века славилась в основном серой.

С древнейших времен серу использовали для религиозно-мистических целей, ее зажигали при различных церемониях и ритуалах. Но так же давно элемент № 16 приобрел и вполне мирские назначения: серой чернили оружие, ее употребляли при изготовлении- косметических и лекарственных мазей, ее жгли для отбелки тканей и для борьбы с насекомыми. Добыча серы значительно увеличилась после того, как был изобретён черный порох. Ведь сера (вместе с углем и селитрой)—непременный его компонент.

И сейчас пороховое производство потребляет часть добываемой серы, правда весьма незначительную. В наше время сера — один из важнейших видов сырья для многих химических производств. И в этом причина непрерывного роста мирового производства серы.

Происхождение серы

Большие скопления самородной серы встречаются не так уж часто. Чаще она присутствует в некоторых рудах. Руда самородной серы — это порода с вкраплениями чистой серы.

Когда образовались эти вкрапления — одновременно с сопутствующими породами или позже? От ответа на этот вопрос зависит направление поисковых и разведочных работ. Но, несмотря на тысячелетия общения с серой, человечество до сих пор не имеет однозначного ответа. Существует несколько теорий, авторы которых придерживаются противоположных взглядов.

Теория сингенеза (т. е. одновременного образования серы и вмещающих пород) предполагает, что образование самородной серы происходило в мелководных бассейнах. Особые бактерии восстанавливали сульфаты, растворенные в воде, до сероводорода, который поднимался вверх, попадал в окислительную зону и здесь химическим путем или при участии других бактерий окислялся до элементарной серы. Сера осаждалась на дно, и впоследствии содержащий серу ил образовал руду.

Теория эпигенеза (вкрапления серы образовались позднее, чем основные породы) имеет несколько вариантов. Самый распространенный из них предполагает, что подземные воды, проникая сквозь толщи пород, обогащаются сульфатами. Если такие воды соприкасаются с месторождениями нефти или природного газа, то ионы сульфатов восстанавливаются углеводородами до сероводорода. Сероводород поднимается к поверхности и, окисляясь, выделяет чистую серу в пустотах и трещинах пород.

В последние десятилетия находит все новые подтверждения одна из разновидностей теории эпигенеза — теория метасоматоза (в переводе с греческого «метасоматоз» означает замещение). Согласно ей в недрах постоянно происходит превращение гипса CaSO4-H2O и ангидрита CaSО4 в серу и кальцит СаСО3. Эта теория создана в 1935 году советскими учеными Л. М. Миропольским и Б. П. Кротовым. В ее пользу говорит, в частности, такой факт.

В 1961 году в Ираке было открыто месторождение Мишрак. Сера здесь заключена в карбонатных породах, которые образуют свод, поддерживаемый уходящими вглубь опорами (в геологии их называют крыльями). Крылья эти состоят в основном из ангидрита и гипса. Такая же картина наблюдалась на отечественном месторождении Шор-Су.

Геологическое своеобразие этих месторождений можно объяснить только с позиций теории метасоматоза: первичные гипсы и ангидриты превратились во вторичные карбонатные руды с вкраплениями самородной серы. Важно не только соседство минералов — среднее содержание серы в руде этих месторождений равно содержанию химически связанной серы в ангидрите. А исследования изотопного состава серы и углерода в руде этих месторождений дали сторонникам теории метасоматоза дополнительные аргументы.

Но есть одно «но»: химизм процесса превращения гипса в серу и кальцит пока не ясен, и потому нет оснований считать теорию метасоматоза единственно правильной. На земле и сейчас существуют озера (в частности, Серное озеро близ Серноводска), где происходит сингенетическое отложение серы и сероносный ил не содержит пи гипса, ни ангидрита.

Все это означает, что разнообразие теорий и гипотез о происхождении самородной серы — результат не только и не столько неполноты наших знаний, сколько сложности явлений, происходящих в недрах. Еще из элементарной школьной математики все мы знаем, что к одному результату могут привести разные пути. Этот закон распространяется и на геохимию.

Добыча серы

Серные руды добывают разными способами—в зависимости от условий залегания. Но в любом случае приходится уделять много внимания технике безопасности. Залежам серы почти всегда сопутствуют скопления ядовитых газов — соединений серы. К тому же нельзя забывать о возможности ее самовозгорания.

Добыча руды открытым способом происходит так. Шагающие экскаваторы снимают пласты пород, под которыми залегает руда. Взрывами рудный пласт дробят, после чего глыбы руды отправляют на обогатительную фабрику, а оттуда—на сероплавильный завод, где из концентрата извлекают серу. Методы извлечения—различны. О некоторых из них будет рассказано ниже. А здесь уместно кратко описать скважинный метод добычи серы из-под земли, позволивший Соединенным Штатам Америки и Мексике стать крупнейшими поставщиками серы.

В конце прошлого века на юге Соединенных Штатов были открыты богатейшие месторождения серной руды. Но подступиться к пластам было непросто: в шахты (а именно шахтным способом предполагалось разрабатывать месторождение) просачивался сероводород и преграждал доступ к сере. Кроме того, пробиться к сероносным пластам мешали песчаные плывуны. Выход нашел химик Герман Фраш, предложивший плавить серу под" землей и через скважины, подобные нефтяным, выкачивать ее на поверхность. Сравнительно невысокая (меньше 120° С) температура плавления серы подтверждала реальность идеи Фраша. В 1890 году начались испытания, приведшие к успеху.

В принципе установка Фраша очень несложна: труба в трубе. В пространство между трубами подается перегретая вода и по нему идет в пласт. А по внутренней, обогреваемой со всех сторон, трубе поднимается расплавленная сера. Современный вариант установки Фраша дополнен третьей — самой узкой трубой. Через нее в скважину подается сжатый воздух, который помогает поднять расплавленную серу на поверхность. Одно из основных достоинств метода Фраша — в том, что он позволяет уже на первой стадии добычи получить сравнительно чистую серу. При разработке богатых руд этот метод весьма эффективен.

Раньше считалось, что метод подземной выплавки серы применим только в специфических условиях «соляных куполов» тихоокеанского побережья США и Мексики. Однако опыты, проведенные в Польше и СССР, опровергли это мнение. В народной Польше этим методом уже добывают большое количество серы; в 1968. году пущены первые серные скважины и в СССР.

А руду, полученную в карьерах и шахтах, приходится перерабатывать (часто с предварительным обогащением), используя для этого различные технологические приемы.

Известно несколько методов получения серы из серных руд: пароводяные, фильтрационные, термические, центрифугальные и экстракционные.

Термические методы извлечения серы — самые старью. Еще в XVIII веке в Неаполитанском королевстве выплавляли серу в кучах —«сольфатарах». До сих пор в Италии выплавляют серу в примитивных печах — «калькаронах». Тепло, необходимое для выплавления серы из руды, получают, сжигая часть добытой серы. Процесс этот малоэффективен, потери достигают 45%.

Италия стала родиной и пароводяных методов извлечения серы из руд. В 1859 году Джузеппе Джилль получил патент на свой аппарат — предшественник нынешних автоклавов. Автоклавный метод (значительно усовершенствованный, конечно) используется и сейчас во многих странах.

В автоклавном процессе обогащенный концентрат серной руды, содержающий до 80% серы, в виде жидкой пульпы с реагентами подается насосами в автоклав. Туда же под давлением подается водяной пар. Пульпа нагревается до 130° С. Сера, содержащаяся в концентрате, плавится и отделяется от породы. После недолгого отстоя выплавленная сера сливается. Затем из автоклава выпускаются «хвосты»—взвесь пустой породы в воде? Хвосты содержат довольно много серы и вновь поступают на обогатительную фабрику.

В России автоклавный способ был впервые применен инженером К. Г. Паткановым в 1896 году.

Современные автоклавы — это огромные аппараты высотой с четырехэтажный дом. Такие автоклавы установлены, в частности, на сероплавильном заводе Роздольского горнохимического комбината в Прикарпатье.

На некоторых производствах, например на крупном серном комбинате в Тарнобжеге (Польша), пустую породу отделяют от расплавленной серы на специальных фильтрах. Метод разделения на специальных центрифугах разработан недавно в нашей стране. Словом, «руду золотую (точнее — золотистую) отделять от породы пустой» можно по-разному.

По-разному и удовлетворяют свои потребности в сере разные страны. Мексика и США используют в основном метод Фраша. Италия, занимающая по добыче серы третье место среди капиталистических государств, продолжает добывать и перерабатывать (разными методами) серные руды сицилийских месторождений и провинции Марко. У Японии есть значительные запасы серы вулканического происхождения. Франция и Канада, не имеющие самородной серы, развили крупное производство, ее из газов. Нет собственных серных месторождений и в Англии и Германии. Свои потребности в серной кислоте они покрывают за счёт переработки серусодержащего сырья (преимущественно пирита), а элементарную серу импортируют.

Россия полностью удовлетворяют свои потребности благодаря собственным источникам сырья. После открытия и освоения богатых Прикарпатских месторождений СССР и Польша значительно увеличили производство серы. Эта отрасль промышленности продолжает развиваться. Были построены новые крупные предприятия на Украине, реконструированы старые комбинаты на Волге и в Туркмении, расширено производство серы из природного газа и отходящих газов.

Кристаллы в макромолекулы

В том, что сера—самостоятельный химический элемент, а не соединение, первым убедился великий французский химик Антуан Лоран Лавуазье в XVIII веке.

С тех пор представления о сере как элементе изменились не очень сильно но значительно углубились и дополнились.

Сейчас известно, что элемент № 16 состоит из смеси четырех устойчивых изотопов с массовыми числами 32, 33, 34 и 36. Это типичный неметалл.

Лимонно-желтые кристаллы чистой серы полупрозрачны. Форма кристаллов не всегда одинакова. Чаще всего встречается ромбическая сера (наиболее устойчивая модификация) — кристаллы имеют вид октаэдров со срезанными углами. В эту модификацию при комнатной (или близкой к комнатной) температуре превращаются все прочие модификации. Известно, например, что при кристаллизации из раплава (температура плавления серы 119,5° С) сначала получаются игольчатые кристаллы (моноклинная форма). Но эта модификация неустойчива, и при температуре ниже 95,6° С она переходит в ромбическую. Подобный процесс происходит и с другими модификациями серы.

Напомним известный опыт — получение пластической серы.

Если расплавленную серу вылить в холодную воду, образуется эластичная, во многом похожая на резину масса. Ее можно получить и в виде нитей. Но проходит несколько дней, и масса перекристаллизуется, становится жесткой и ломкой.

Молекулы кристаллов серы всегда состоят из восьми атомов (S8), а различие в свойствах модификаций серы объясняется полиморфизмом — неодинаковым строением кристаллов. Атомы в молекуле серы построены в замкнутый цикл

S-S-S

S-S-S

При плавлении связи в цикле рвутся, и циклические молекулы превращаются в линейные.

Необычному поведению серь при плавлении даются различные толкования. Одно из них — такое. При температуре от 155 до 187°, по-видимому, происходит значительный рост молекулярного веса, это подтверждается многократным увеличением вязкости. При 187° С вязкость расплава достигает чуть ли ни тысячи пуаз, получается почти твердое вещество. Дальнейший рост температуры приводит к уменьшению вязкости (молекулярный вес падает). При 300° С сера вновь переходит в текучее состояние, а при 444,6° С закипает.

У паров серы с повышением температуры число атомов в молекуле постепенно уменьшается:

S8 —> S6—> S4 —> S2. При 1700°С пары серы одноатомны.

Коротко о соединениях серы

По распространенности элемент, № 16 занимает -15-е место. Содержание серы в земной коре составляет 0,05% по весу. Это немало.

К тому же сера химически активна и вступает" в реакции с большинством элементов. Поэтому в природе сера встречается не только в свободном состоянии, но и в виде разнообразных неорганических соединений. Особенно распространены сульфаты, (главным образом щелочных и щелочноземельных, металлов) и сульфиды (железа, меди, цинка, свинца). Сера есть и в углях, сланцах, нефти, природных газах, в организмах животных и растений.

При взаимодействии серы с металлами, как правило, выделяется довольно много тепла. В реакциях с кислородом сера дает несколько окислов, из них самые важные SО2 и SО3 — ангидриды сернистой Н2SО3 и серной Н2SО4 кислот. Соединение серы с водородом - сероводород Н2S — очень ядовитый, зловонный газ, всегда присутствующий в местах гниения органических остатков. Земная

кора в местах, расположенных близ месторождений серы, часто содержит довольно значительные количества сероводорода. В водном растворе этот газ обладает кислотными свойствами. Хранить его растворы на воздухе нельзя, он окисляется с выделением серы:

2H2S + О2=2Н2О + 2S.

Сероводород — сильный восстановитель. Этим его свойством пользуются во многих химических производствах.

Для чего нужна сера

Среди вещей, окружающих нас, мало таких, для изготовления которых не нужны были бы сера и ее соединения. Бумага и резина, эбонит и спички, ткани и лекарства, косметика и пластмассы, взрывчатка и краска, удобрения и ядохимикаты — вот далеко не полный перечень вещей и веществ, для производства которых нужен элемент № 16. Для того чтобы изготовить, например, автомобиль, нужно израсходовать около 14 кг серы. Можно без преувеличения сказать, что промышленный потенциал страны довольно точно определяется потреблением серы.

Значительную часть мировой добычи серы поглощает бумажная промышленность (соединения серы помогают выделить целлюлозу). Для того чтобы произвести одну тонну целлюлозы, нужно затратить более 100 кг серы. Много элементарной серы потребляет и резиновая промышленность — для вулканизации каучуков.

В сельском хозяйстве сера применяется как в элементарном виде, так и в различных соединениях. Она входит в состав минеральных удобрений и препаратов для борьбы с вредителями. Наряду с фосфором, калием и другими элементами сера необходима растениям. Впрочем, большая часть вносимой в почву серы не усваивается ими, но помогает усваивать фосфор. Серу вводят в почву вместе с фосфоритной мукой. Имеющиеся в почве бактерии окисляют ее, образующиеся серная и сернистая кислоты реагируют с фосфоритами, и в результате получаются фосфорные соединения, хорошо усваиваемые растениями.

Однако основной потребитель серы — химическая промышленность. Примерно половина добываемой в мире серы идет на производство серной кислоты. Чтобы получить одну тонну H2SО4, нужно сжечь около 300 кг серы. А роль серной кислоты: в химической промышленности сравнима с ролью хлеба в нашем питании.

Значительное количество серы (и серной кислоты) расходуется при производстве взрывчатых веществ и спичек. Чистая» освобожденная от примесей сера нужна для производства красителей и светящихся составов.

Соединения серы находят применение в нефтехимической промышленности. В частности, они необходимы при. -производстве антидетонаторов, смазочных веществ для аппаратуры сверхвысоких давлений; в охлаждающих маслах, ускоряющих обработку.металла, содержится иногда до 18% серы.

Перечисление примеров, подтверждающих первостепенную важность элемента № 16, можно было бы продолжить, но «нельзя объять необъятное». Поэтому вскользь упомянем, что сера необходима и таким отраслям промышленности, как горнодобывающая, пищевая, текстильная, и — поставим точку.

* * *

Наш век считается веком «экзотических» материалов — трансурановых элементов, титана, полупроводников, и так далее. Но внешне непритязательный, давно известный элемент № 16 продолжает оставаться абсолютно необходимым. Подсчитано, что в производстве 88 из 150 важнейших химических продуктов используют либо саму серу, либо ее соединения.

Положение в периодической системе: сера находится в 3 периоде, VI группе, главной (А) подгруппе.

Атомный номер серы 16, следовательно, заряд атома серы равен + 16, число электронов 16. Три электронных уровня (равно периоду), на внешнем уровне 6 электронов (равно номеру группы для главных подгрупп).

Схема расположения электронов по уровням:
16 S)))
2 8 6

Ядро атома серы 32 S содержит 16 протонов (равно заряду ядра) и 16 нейтронов (атомная масса минус число протонов: 32 – 16 = 16).

Сера как простое вещество образует две аллотропные модификации: кристаллическая сера и пластическая.

Кристаллическая сера – твердое вещество желтого цвета, хрупкое, легкоплавкое (температура плавления 112° С), нерастворима в воде. Сера и многие руды, содержащие серу, не смачиваются водой. Поэтому порошок серы может плавать на поверхности, хотя сера тяжелее воды (плотность 2 г/см 3).

На этом основан метод обогащения руд под названием флотация: измельченная руда погружается в емкость с водой, через которую продувается воздух. Частички полезной руды подхватываются пузырьками воздуха и выносятся наверх, а пустая порода (например, песок) оседает на дно.

Пластическая сера темного цвета и способна растягиваться, как резина.

Это отличие в свойствах связано со строением молекул: кристаллическая сера состоит из кольцевых молекул, содержащих 8 атомов серы, а в пластической сере атомы соединены в длинные цепи. Пластическую серу можно получить, если нагреть серу до кипения и вылить в холодную воду.

В уравнениях для простоты записывают серу без указания числа атомов в молекуле: S.

Химические свойства:

  1. В реакциях с восстановителями: металлами, водородом, – сера проявляет себя как окислитель (степень окисления -2, валентность II). При нагревании порошков серы и железа образуется сульфид железа:
    Fe + S = FeS
    Со ртутью, натрием порошок серы реагирует при комнатной температуре:
    Hg + S = HgS
  2. При пропускании водорода через расплавленную серу образуется сероводород:
    H 2 + S = H 2 S
  3. В реакциях с сильными окислителями сера окисляется. Так, сера горит, образуется оксид серы (IV) – сернúстый газ:
    S + O 2 = SO 2

Оксид серы (IV) – кислотный оксид. Реагирует с водой с образованием сернúстой кислоты:

SO 2 + H 2 O = H 2 SO 3

Эта реакция происходит в атмосфере при сжигании каменного угля, который обычно содержит примеси серы. В результате выпадают кислотные дожди, поэтому очень важно подвергать очистке дымовые газы котельных.

В присутствии катализаторов оксид серы (IV) окисляется до оксида серы (VI):

2SO 2 + O 2 2SO 3 (реакция обратима)

Оксид серы (VI) реагирует с водой с образованием серной кислоты:

SO 3 + H 2 O = H 2 SO 4

SO 3 – бесцветная жидкость, кристаллизуется при 17° С, переходит в газообразное состояние при 45° С


Сера (лат. Sulfur) -химический элемент VI группы периодической системы Менделеева; атомный номер 16, атомная масса 32,06.
С серой человечество знакомо с глубокой древности. Серу и продукт ее горения оксид (IV) SO 2 издавна употребляли для отбеливания тканей и изготовления лекарственных средств, чернения оружия и приготовления черного пороха. В странах древнейших цивилизаций самородная сера была достаточно распространена; сицилийские месторождения этого горючего, с резким запахом желтого минерала разрабатывались еще древними римлянами. Русское название серы происходит от древнеиндусского «сира», означавшего светло-желтый. Но не всегда сера - светло-желтая. Цвет ее зависит от того, в какой из аллотропических модификаций находится сера (наиболее известны ромбическая и моноклинная сера), а также от температуры. Погруженная в жидкий воздух сера становится почти белой (см. Аллотропия).
Сера принадлежит к числу довольно распространенных на нашей планете химических элементов, составляя примерно 4,7 10-2% от общей массы земной коры. Встречается самородная сера, но большая часть ее запасов находится в виде соединений-сульфидов и сульфатов. Основные из них-пирит FeS2, цинковая обманка ZnS, медный колчедан FeCuS2, гипс CaSO4-2H2O. Полагают, что большая часть земной серы сосредоточена в виде сульфидов (солей сероводородной кислоты H2S) не в земной коре, а на глубине 1200-3000 км. Добывают самородную серу из месторождений, залегающих на небольшой глубине.
Давно известные методы добычи самородной серы - термические. Сера легкоплавка, она превращается в жидкость при температуре 112,8°С (в зависимости от скорости подвода тепла и от того, в какой аллотропической модификации находилась сера). Большинство минералов при таком нагреве остаются твердыми, и расплавленную серу легко удалить из содержащих ее горных пород. Серу получают также из оксида (IV) SO2, образующегося при обжиге сульфидных руд металлов.


Сера-неметалл, это элемент химически активный. Она реагирует, со многими металлами: при комнатной температуре со щелочными, щелочноземельными, медью, серебром, ртутью, а при нагревании-с железом, алюминием, свинцом, цинком. Лишь с золотом и платиной сера не взаимодействует. Этот элемент вступает в соединения и с неметаллами (кроме азота и йода], хотя и не так легко, как с металлами. Степень окисления серы в соединениях меняется от -2 (H2S) до + 6(SО3). Примерно половина добываемой в мире серы идет на производство серной кислоты H2SO4- главного, пожалуй, соединения серы, чрезвычайно важного для химической промышленности. Еще 25% расходуется на получение очень важного для производства бумаги гидросульфита кальция Ca(HSO3)2. Сера необходима для получения резины - вулканизированного каучука. Каучук смешивают с серой и нагревают. После вулканизации он становится прочным и эластичным.
Сера нужна также в производстве спичек и пластмасс, тканей и различных химикатов, лекарственных средств, например сульфамидных препаратов.
Серу следует считать жизненно важным элементом. Она входит в состав белков и аминокислот, ферментов и витаминов.
Из неорганических соединений серы кроме серной кислоты особенно важны оксиды серы SO2 и SO3, сероводород H2S-ядовитый зловонный газ, используемый тем не менее и в химической промышленности, и как лечебное средство (сернистые ванны), а также сульфиды, сульфиты, сульфаты и тиосульфаты.
Соединения серы необходимы во многих отраслях промышленности и широко используются. Академик А. Е. Ферсман назвал серу «двигателем химической промышленности». Но нельзя не упомянуть и о том, что некоторые соединения этого элемента, и прежде всего газ SO2, сильно загрязняют атмосферу. Вредна сера и в составе углеводородных топлив, куда она переходит из нефти и газа. На нефтеперерабатывающих заводах существуют цехи очистки продуктов от серы - десульфуризации.

Сера (лат. sulfur) s, химический элемент vi группы периодической системы Менделеева; атомный номер 16, атомная масса 32,06. Природная С. состоит из четырёх стабильных изотопов: 32 s (95,02%), 33 s (0,75%), 34 s (4,21%), 36 s (0,02%). Получены также искусственные радиоактивные изотопы 31 s (t 1/2 = 2,4 сек ), 35 s (t 1/2 = 87,1 cym ), 37 s (t 1/2 = 5,04 мин ).

Историческая справка. С. в самородном состоянии, а также в виде сернистых соединений известна с древнейших времён. Она упоминается в Библии, поэмах Гомера и др. С. входила в состав «священных» курений при религиозных обрядах; считалось, что запах горящей С. отгоняет злых духов. С. давно стала необходимым компонентом зажигательных смесей для военных целей, например «греческого огня» (10 в. н. э.). Около 8 в. в Китае стали использовать С. в пиротехнических целях. Издавна С. и её соединениями лечили кожные заболевания. В период арабской алхимии возникла гипотеза, согласно которой С. (начало горючести) и ртуть (начало металличности) считали составными частями всех металлов. Элементарную природу С. установил А. Л. Лавуазье и включил её в список неметаллических простых тел (1789). В 1822 Э. Мичерлих обнаружил аллотропию С.

Распространение в природе. С. относится к весьма распространённым химическим элементам (кларк 4,7 · 10 -2); встречается в свободном состоянии (сера самородная ) и в виде соединений - сульфидов, полисульфидов, сульфатов. Вода морей и океанов содержит сульфаты натрия, магния, кальция. Известно более 200 минералов С., образующихся при эндогенных процессах. В биосфере образуется свыше 150 минералов С. (преимущественно сульфатов); широко распространены процессы окисления сульфидов до сульфатов, которые в свою очередь восстанавливаются до вторичного h 2 s и сульфидов. Эти реакции происходят при участии микроорганизмов. Многие процессы биосферы приводят к концентрации С. - она накапливается в гумусе почв, углях, нефти, морях и океанах (8,9 · 10 -2 %), подземных водах, в озёрах и солончаках. В глинах и сланцах С. в 6 раз больше, чем в земной коре в целом, в гипсе - в 200 раз, в подземных сульфатных водах - в десятки раз. В биосфере происходит круговорот С.: она приносится на материки с атмосферными осадками и возвращается в океан со стоком. Источником С. в геологическом прошлом Земли служили главным образом продукты извержения вулканов, содержащие so 2 и h 2 s. Хозяйственная деятельность человека ускорила миграцию С.; интенсифицировалось окисление сульфидов.

Физические и химические свойства. С. - твёрдое кристаллическое вещество, устойчивое в виде двух аллотропических модификаций. Ромбическая a -s лимонно-жёлтого цвета, плотность 2,07 г/см 3 , t пл 112,8 °С, устойчива ниже 95,6°С; моноклинная b -s медово-жёлтого цвета, плотность 1,96 г/см 3 , t пл 119,3 °С, устойчива между 95,6 °С и температурой плавления. Обе эти формы образованы восьмичленными циклическими молекулами s 8 с энергией связи s - s 225,7 кдж/моль .

При плавлении С. превращается в подвижную жёлтую жидкость, которая выше 160 °С буреет, а около 190 °С становится вязкой тёмно-коричневой массой. Выше 190°С вязкость уменьшается, а при 300 °С С. вновь становится жидкотекучей. Это обусловлено изменением строения молекул: при 160 °С кольца s 8 начинают разрываться, переходя в открытые цепи; дальнейшее нагревание выше 190 °С уменьшает среднюю длину таких цепей.

Если расплавленную С., нагретую до 250-300 °С, влить тонкой струей в холодную воду, то получается коричнево-жёлтая упругая масса (пластическая С.). Она лишь частично растворяется в сероуглероде, в осадке остаётся рыхлый порошок. Растворимая в cs 2 модификация называется l -s, а нерастворимая - m -s. При комнатной температуре обе эти модификации превращаются в устойчивую хрупкую a -s. t kип С. 444,6 °С (одна из стандартных точек международной температурной шкалы). В парах при температуре кипения, кроме молекул s 8 , существуют также s 6 , s 4 и s 2 . При дальнейшем нагревании крупные молекулы распадаются, и при 900°С остаются лишь s 2 , которые приблизительно при 1500°С заметно диссоциируют на атомы. При замораживании жидким азотом сильно нагретых паров С. получается устойчивая ниже - 80°С пурпурная модификация, образованная молекулами s 2 .

С. - плохой проводник тепла и электричества. В воде она практически нерастворима, хорошо растворяется в безводном аммиаке, сероуглероде и в ряде органических растворителей (фенол, бензол, дихлорэтан и др.).

Конфигурация внешних электронов атома s 3 s 2 3 p 4 . В соединениях С. проявляет степени окисления -2, +4, +6.

С. химически активна и особенно легко при нагревании соединяется почти со всеми элементами, за исключением n 2 , i 2 , au, pt и инертных газов. С o 2 на воздухе выше 300 °С образует окислы: s o 2 - сернистый ангидрид и s o 3 - серный ангидрид , из которых получают соответственно сернистую кислоту и серную кислоту , а также их соли сульфиты и сульфаты . Уже на холоду s энергично соединяется с f 2 , при нагревании реагирует с c l 2; с бромом С. образует только s 2 b r 2 , иодиды серы неустойчивы. При нагревании (150 - 200 °С) наступает обратимая реакция с h 2 с получением сернистого водорода . С. образует также многосернистые водороды общей формулы h 2 s x , т. н. сульфаны. Известны многочисленные сераорганические соединения .

При нагревании С. взаимодействует с металлами, образуя соответствующие сернистые соединения (сульфиды) и многосернистые металлы (полисульфиды). При температуре 800-900 °С пары С. реагируют с углеродом, образуя сероуглерод cs 2 . Соединения С. с азотом (n 4 s 4 и n 2 s 5) могут быть получены только косвенным путём.

Получение. Элементарную С. получают из серы самородной, а также окислением сернистого водорода и восстановлением сернистого ангидрида. О способах добычи С. Источник сернистого водорода для производства С. - коксовые, природные газы, газы крекинга нефти. Разработаны многочисленные методы переработки h 2 s; наибольшее значение имеют следующие: 1) h 2 s извлекают из газов раствором моногидротиоарсената натрия:

na 2 hass 2 + h 2 s = na 2 hass 3 o + h 2 o .

Затем продувкой воздуха через раствор осаждают С. в свободном виде:

nahass 3 o + 1/2 o 2 = na 2 hass 2 o 2 + s.

2) h 2 s выделяют из газов в концентрированном виде. Затем его основная масса окисляется кислородом воздуха до С. и частично до so 2 . После охлаждения h 2 s и образовавшиеся газы (so 2 , n 2 , co 2) поступают в два последовательных конвертора, где в присутствии катализатора (активированный боксит или специально изготовляемый алюмогель) происходит реакция:

2h 2 s + so 2 = 3s + 2h 2 o.

В основе получения С. из so 2 лежит реакция восстановления его углём или природными углеводородными газами. Иногда это производство сочетается с переработкой пиритных руд.

В 1972 элементарной С. в мире (без социалистических стран) произведено 32,0 млн. т ; основная масса её добывалась из природных самородных руд. В 70-е гг. 20 в. первостепенное значение (в связи с открытием крупных месторождений сероводородсодержащих топливных газов) приобретают методы получения С. из h 2 s.

Сорта С. Выплавленная непосредственно из серных руд С. называется природной комовой; полученная из h 2 s и s o 2 - газовой комовой. Природная комовая С., очищенная перегонкой, называется рафинированной. Сконденсированная из паров при температуре выше точки плавления в жидком состоянии и затем разлитая в формы - черенковой С. При конденсации С. ниже точки плавления на стенках конденсационных камер образуется мелкий порошок С. - серный цвет. Особо высокодисперсная С. носит название коллоидной.

Применение . С. применяется в первую очередь для получения серной кислоты: в бумажной промышленности (для получения сульфитцеллюлозы); в сельском хозяйстве (для борьбы с болезнями растений, главным образом винограда и хлопчатника); в резиновой промышленности (вулканизующий агент); в производстве красителей и светящихся составов; для получения чёрного (охотничьего) пороха; в производстве спичек.

И. К. Малина.

Сера в организме. В виде органических и неорганических соединений С. постоянно присутствует во всех живых организмах и является важным биогенным элементом . Её среднее содержание в расчёте на сухое вещество составляет: в морских растениях около 1,2%, наземных - 0,3%, в морских животных 0,5-2%, наземных - 0,5%. Биологическая роль С. определяется тем, что она входит в состав широко распространённых в живой природе соединений: аминокислот (метионин , цистеин ), и следовательно белков и пептидов; коферментов (кофермент А, липоевая кислота ), витаминов (биотин , тиамин ), глутатиона и другие Сульфгидрильные группы (- sh) остатков цистеина играют важную роль в структуре и каталитическая активности многих ферментов. Образуя дисульфидные связи (- s - s -) внутри отдельных полипептидных цепей и между ними, эти группы участвуют в поддержании пространственной структуры молекул белков. У животных С. обнаружена также в виде органических сульфатов и сульфокислот - хондроитинсерной кислоты (в хрящах и костях), таурохолиевой кислоты (в жёлчи), гепарина , таурина . В некоторых железосодержащих белках (например, ферродоксинах) С. обнаружена в форме кислотолабильного сульфида. С. способна к образованию богатых энергией связей в макроэргических соединениях .

Неорганические соединения С. в организмах высших животных обнаружены в небольших количествах, главным образом в виде сульфатов (в крови, моче), а также роданидов (в слюне, желудочном соке, молоке, моче). Морские организмы богаче неорганическими соединениями С., чем пресноводные и наземные. Для растений и многих микроорганизмов сульфат (so 4 2-) наряду с фосфатом и нитратом служит важнейшим источником минерального питания. Перед включением в органические соединения С. претерпевает изменения в валентности и превращается затем в органическую форму в своём наименее окисленном состоянии; т. о. С. широко участвует в окислительно-восстановительных реакциях в клетках. В клетках сульфаты, взаимодействуя с аденозинтрифосфатом (АТФ), превращаются в активную форму - аденилилсульфат:

АТФ + сульфат ---сульфурилаза ---> аденилсульфат + пирофосфат

Катализирующий эту реакцию фермент - сульфурилаза (АТФ: сульфат - адснилилтрансфераза) широко распространён в природе. В такой активированной форме сульфонильная группа подвергается дальнейшим превращениям - переносится на др. акцептор или восстанавливается.

Животные усваивают С. в составе органических соединений. Автотрофные организмы получают всю С., содержащуюся в клетках, из неорганических соединений, главным образом в виде сульфатов. Способностью к автотрофному усвоению С. обладают высшие растения, многие водоросли, грибы и бактерии. (Из культуры бактерий был выделен специальный белок, осуществляющий перенос сульфата через клеточную мембрану из среды в клетку.) Большую роль в круговороте С. в природе играют микроорганизмы - десульфурирующие бактерии и серобактерии . Многие разрабатываемые месторождения С. - биогенного происхождения. С. входит в состав антибиотиков (пенициллины , цефалоспорины ); её соединения используются в качестве радиозащитных средств , средств защиты растений.

Л. И. Беленький.

Лит.: Справочник сернокислотчика, под ред. К. М. Малина, 2 изд., М., 1971; Природная сера, под ред. М. А. Менковского, М., 1972; Некрасов Б. В., Основы обшей химии, 3 изд., т. 1, М., 1973; Реми Г., Курс неорганической химии, пер. с нем., т. 1, М., 1972; Янг Л., Моу Д ж., Метаболизм соединений серы, пер. с англ., М., 1961; Горизонты биохимии, пер. с англ., М., 1964; Биохимия растений, пер. с англ., М., 1968, гл. 19; Торчинский Ю. М., Сульфгидрильные и дисульфидные группы белков, М., 1971; Дегли С., Никольсон Д., Метаболические пути, пер. с англ., М., 1973.

cкачать реферат